Runge-Kutta convolution quadrature for operators arising in wave propagation
نویسندگان
چکیده
An error analysis of Runge-Kutta convolution quadrature is presented for a class of nonsectorial operators whose Laplace transform satisfies, besides the standard assumptions of analyticity in a half-plane Re s > σ0 and a polynomial bound O(s 1) there, the stronger polynomial bound O(s2) in convex sectors of the form | arg s| ≤ π/2 − θ < π/2 for θ > 0. The order of convergence of the Runge-Kutta convolution quadrature is determined by μ2 and the underlying Runge-Kutta method, but is independent of μ1. Time domain boundary integral operators for wave propagation problems have Laplace transforms that satisfy bounds of the above type. Numerical examples from acoustic scattering show that the theory describes accurately the convergence behaviour of Runge-Kutta convolution quadrature for this class of applications. Our results show in particular that the full classical order of the Runge-Kutta method is attained away from the scattering boundary.
منابع مشابه
Generalized convolution quadrature based on Runge-Kutta methods
Convolution equations for time and space-time problems have many important applications, e.g., for the modelling of wave or heat propagation via ordinary and partial differential equations as well as for the corresponding integral equation formulations. For their discretization, the convolution quadrature (CQ) has been developed since the late 1980’s and is now one of the most popular method in...
متن کاملFast convolution quadrature for the wave equation in three dimensions
This work addresses the numerical solution of time-domain boundary integral equations arising from acoustic and electromagnetic scattering in three dimensions. The semidiscretization of the time-domain boundary integral equations by Runge-Kutta convolution quadrature leads to a lower triangular Toeplitz system of size N . This system can be solved recursively in an almost linear time (O(N logN)...
متن کاملNumerical solution of exterior Maxwell problems by Galerkin BEM and Runge-Kutta convolution quadrature
In this paper we consider time-dependent electromagnetic scattering problems from conducting objects. We discretize the time-domain electric field integral equation using RungeKutta convolution quadrature in time and a Galerkin method in space. We analyze the involved operators in the Laplace domain and obtain convergence results for the fully discrete scheme. Numerical experiments indicate the...
متن کاملRunge-kutta Methods for Parabolic Equations and Convolution Quadrature
We study the approximation properties of Runge-Kutta time discretizations of linear and semilinear parabolic equations, including incompressible Navier-Stokes equations. We derive asymptotically sharp error bounds and relate the temporal order of convergence, which is generally noninteger, to spatial regularity and the type of boundary conditions. The analysis relies on an interpretation of Run...
متن کاملAn error analysis of Runge-Kutta convolution quadrature
An error analysis is given for convolution quadratures based on strongly A-stable RungeKutta methods, for the non-sectorial case of a convolution kernel with a Laplace transform that is polynomially bounded in a half-plane. The order of approximation depends on the classical order and stage order of the Runge-Kutta method and on the growth exponent of the Laplace transform. Numerical experiment...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Numerische Mathematik
دوره 119 شماره
صفحات -
تاریخ انتشار 2011